Note
Click here to download the full example code
Robust Soft Learning Vector QuantizationΒΆ
This example shows the different glvq algorithms and how they project different data sets. The data sets are chosen to show the strength of each algorithm. Each plot shows for each data point which class it belongs to (big circle) and which class it was classified to (smaller circle). It also shows the prototypes (light blue circle). The projected data is shown in the right plot.
![../_images/sphx_glr_plot_rslvq_001.png](../_images/sphx_glr_plot_rslvq_001.png)
Out:
RSLVQ:
not implemented!
('classification accuracy:', 1.0)
import numpy as np
import matplotlib.pyplot as plt
from sklearn_lvq import RslvqModel
from sklearn_lvq.utils import plot2d
print(__doc__)
nb_ppc = 100
print('RSLVQ:')
x = np.append(
np.random.multivariate_normal([0, 0], np.eye(2) / 2, size=nb_ppc),
np.random.multivariate_normal([5, 0], np.eye(2) / 2, size=nb_ppc), axis=0)
y = np.append(np.zeros(nb_ppc), np.ones(nb_ppc), axis=0)
rslvq = RslvqModel(initial_prototypes=[[5,0,0],[0,0,1]])
rslvq.fit(x, y)
plot2d(rslvq, x, y, 1, 'rslvq')
print('classification accuracy:', rslvq.score(x, y))
plt.show()
Total running time of the script: ( 0 minutes 0.866 seconds)