sklearn_lvq
.MrslvqModel¶
-
class
sklearn_lvq.
MrslvqModel
(prototypes_per_class=1, initial_prototypes=None, initial_matrix=None, regularization=0.0, dim=None, sigma=1, max_iter=1000, gtol=1e-05, display=False, random_state=None)[source]¶ Matrix Robust Soft Learning Vector Quantization
Parameters: - prototypes_per_class : int or list of int, optional (default=1)
Number of prototypes per class. Use list to specify different numbers per class.
- initial_prototypes : array-like,
- shape = [n_prototypes, n_features + 1], optional
Prototypes to start with. If not given initialization near the class means. Class label must be placed as last entry of each prototype
- initial_matrix : array-like, shape = [dim, n_features], optional
Relevance matrix to start with. If not given random initialization for rectangular matrix and unity for squared matrix.
- regularization : float, optional (default=0.0)
Value between 0 and 1. Regularization is done by the log determinant of the relevance matrix. Without regularization relevances may degenerate to zero.
- dim : int, optional (default=nb_features)
Maximum rank or projection dimensions
- sigma : float, optional (default=0.5)
Variance for the distribution.
- max_iter : int, optional (default=500)
The maximum number of iterations.
- gtol : float, optional (default=1e-5)
Gradient norm must be less than gtol before successful termination of l-bfgs-b.
- display : boolean, optional (default=False)
Print information about the bfgs steps.
- random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.
Attributes: - w_ : array-like, shape = [n_prototypes, n_features]
Prototype vector, where n_prototypes in the number of prototypes and n_features is the number of features
- c_w_ : array-like, shape = [n_prototypes]
Prototype classes
- classes_ : array-like, shape = [n_classes]
Array containing labels.
- dim_ : int
Maximum rank or projection dimensions
- omega_ : array-like, shape = [dim, n_features]
Relevance matrix
See also
Methods
fit
(x, y)Fit the LVQ model to the given training data and parameters using l-bfgs-b. get_params
([deep])Get parameters for this estimator. posterior
(y, x)calculate the posterior for x: predict
(x)Predict class membership index for each input sample. project
(x, dims[, print_variance_covered])Projects the data input data X using the relevance matrix of trained model to dimension dim score
(X, y[, sample_weight])Returns the mean accuracy on the given test data and labels. set_params
(**params)Set the parameters of this estimator. -
__init__
(prototypes_per_class=1, initial_prototypes=None, initial_matrix=None, regularization=0.0, dim=None, sigma=1, max_iter=1000, gtol=1e-05, display=False, random_state=None)[source]¶ x.__init__(…) initializes x; see help(type(x)) for signature
-
fit
(x, y)¶ Fit the LVQ model to the given training data and parameters using l-bfgs-b.
Parameters: - x : array-like, shape = [n_samples, n_features]
Training vector, where n_samples in the number of samples and n_features is the number of features.
- y : array, shape = [n_samples]
Target values (integers in classification, real numbers in regression)
Returns: - self
-
get_params
(deep=True)¶ Get parameters for this estimator.
Parameters: - deep : boolean, optional
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: - params : mapping of string to any
Parameter names mapped to their values.
-
posterior
(y, x)¶ - calculate the posterior for x:
- p(y|x)
Parameters: - y: class
label
- x: array-like, shape = [n_features]
sample
Returns: - posterior
- :return: posterior
-
predict
(x)¶ Predict class membership index for each input sample.
This function does classification on an array of test vectors X.
Parameters: - x : array-like, shape = [n_samples, n_features]
Returns: - C : array, shape = (n_samples,)
Returns predicted values.
-
project
(x, dims, print_variance_covered=False)[source]¶ Projects the data input data X using the relevance matrix of trained model to dimension dim
Parameters: - x : array-like, shape = [n,n_features]
input data for project
- dims : int
dimension to project to
- print_variance_covered : boolean
flag to print the covered variance of the projection
Returns: - C : array, shape = [n,n_features]
Returns predicted values.
-
score
(X, y, sample_weight=None)¶ Returns the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
Parameters: - X : array-like, shape = (n_samples, n_features)
Test samples.
- y : array-like, shape = (n_samples) or (n_samples, n_outputs)
True labels for X.
- sample_weight : array-like, shape = [n_samples], optional
Sample weights.
Returns: - score : float
Mean accuracy of self.predict(X) wrt. y.
-
set_params
(**params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.Returns: - self