sklearn_lvq.GlvqModel¶
- 
class sklearn_lvq.GlvqModel(prototypes_per_class=1, initial_prototypes=None, max_iter=2500, gtol=1e-05, beta=2, C=None, display=False, random_state=None)[source]¶
- Generalized Learning Vector Quantization - Parameters: - prototypes_per_class : int or list of int, optional (default=1)
- Number of prototypes per class. Use list to specify different numbers per class. 
- initial_prototypes : array-like, shape = [n_prototypes, n_features + 1],
- optional
- Prototypes to start with. If not given initialization near the class means. Class label must be placed as last entry of each prototype. 
 
- max_iter : int, optional (default=2500)
- The maximum number of iterations. 
- gtol : float, optional (default=1e-5)
- Gradient norm must be less than gtol before successful termination of bfgs. 
- beta : int, optional (default=2)
- Used inside phi. 1 / (1 + np.math.exp(-beta * x)) 
- C : array-like, shape = [2,3] ,optional
- Weights for wrong classification of form (y_real,y_pred,weight) Per default all weights are one, meaning you only need to specify the weights not equal one. 
- display : boolean, optional (default=False)
- Print information about the bfgs steps. 
- random_state : int, RandomState instance or None, optional
- If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random. 
 - Attributes: - w_ : array-like, shape = [n_prototypes, n_features]
- Prototype vector, where n_prototypes in the number of prototypes and n_features is the number of features 
- c_w_ : array-like, shape = [n_prototypes]
- Prototype classes 
- classes_ : array-like, shape = [n_classes]
- Array containing labels. 
 - See also - Methods - decision_function(x)- Predict confidence scores for samples. - fit(x, y)- Fit the LVQ model to the given training data and parameters using l-bfgs-b. - get_params([deep])- Get parameters for this estimator. - phi(x)- Parameters: - phi_prime(x)- Parameters: - predict(x)- Predict class membership index for each input sample. - project(x, dims[, print_variance_covered])- Projects the data input data X using the relevance matrix of trained model to dimension dim - score(X, y[, sample_weight])- Returns the mean accuracy on the given test data and labels. - set_params(**params)- Set the parameters of this estimator. - 
__init__(prototypes_per_class=1, initial_prototypes=None, max_iter=2500, gtol=1e-05, beta=2, C=None, display=False, random_state=None)[source]¶
- x.__init__(…) initializes x; see help(type(x)) for signature 
 - 
decision_function(x)[source]¶
- Predict confidence scores for samples. - Parameters: - x : array-like, shape = [n_samples, n_features]
 - Returns: - T : array-like, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes)
 
 - 
fit(x, y)¶
- Fit the LVQ model to the given training data and parameters using l-bfgs-b. - Parameters: - x : array-like, shape = [n_samples, n_features]
- Training vector, where n_samples in the number of samples and n_features is the number of features. 
- y : array, shape = [n_samples]
- Target values (integers in classification, real numbers in regression) 
 - Returns: - self
 
 - 
get_params(deep=True)¶
- Get parameters for this estimator. - Parameters: - deep : boolean, optional
- If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 - Returns: - params : mapping of string to any
- Parameter names mapped to their values. 
 
 - 
predict(x)[source]¶
- Predict class membership index for each input sample. - This function does classification on an array of test vectors X. - Parameters: - x : array-like, shape = [n_samples, n_features]
 - Returns: - C : array, shape = (n_samples,)
- Returns predicted values. 
 
 - 
project(x, dims, print_variance_covered=False)¶
- Projects the data input data X using the relevance matrix of trained model to dimension dim - Parameters: - x : array-like, shape = [n,n_features]
- input data for project 
- dims : int
- dimension to project to 
- print_variance_covered : boolean
- flag to print the covered variance of the projection 
 - Returns: - C : array, shape = [n,n_features]
- Returns predicted values. 
 
 - 
score(X, y, sample_weight=None)¶
- Returns the mean accuracy on the given test data and labels. - In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted. - Parameters: - X : array-like, shape = (n_samples, n_features)
- Test samples. 
- y : array-like, shape = (n_samples) or (n_samples, n_outputs)
- True labels for X. 
- sample_weight : array-like, shape = [n_samples], optional
- Sample weights. 
 - Returns: - score : float
- Mean accuracy of self.predict(X) wrt. y. 
 
 - 
set_params(**params)¶
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form - <component>__<parameter>so that it’s possible to update each component of a nested object.- Returns: - self