Source code for sklearn_lvq.lmrslvq

# -*- coding: utf-8 -*-

# Author: Joris Jensen <jjensen@techfak.uni-bielefeld.de>
#
# License: BSD 3 clause

from __future__ import division

import numpy as np
from scipy.optimize import minimize
from sklearn.utils import validation

from .rslvq import RslvqModel


[docs]class LmrslvqModel(RslvqModel): """Localized Matrix Robust Soft Learning Vector Quantization Parameters ---------- prototypes_per_class : int or list of int, optional (default=1) Number of prototypes per class. Use list to specify different numbers per class. initial_prototypes : array-like, shape = [n_prototypes, n_features + 1], optional Prototypes to start with. If not given initialization near the class means. Class label must be placed as last entry of each prototype. initial_matrices : list of array-like, optional Matrices to start with. If not given random initialization regularization : float or array-like, shape = [n_classes/n_prototypes], optional (default=0.0) Values between 0 and 1. Regularization is done by the log determinant of the relevance matrix. Without regularization relevances may degenerate to zero. dim : int, optional Maximum rank or projection dimensions classwise : boolean, optional If true, each class has one relevance matrix. If false, each prototype has one relevance matrix. sigma : float, optional (default=0.5) Variance for the distribution. max_iter : int, optional (default=2500) The maximum number of iterations. gtol : float, optional (default=1e-5) Gradient norm must be less than gtol before successful termination of bfgs. display : boolean, optional (default=False) Print information about the bfgs steps. random_state : int, RandomState instance or None, optional If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- w_ : array-like, shape = [n_prototypes, n_features] Prototype vector, where n_prototypes in the number of prototypes and n_features is the number of features c_w_ : array-like, shape = [n_prototypes] Prototype classes classes_ : array-like, shape = [n_classes] Array containing labels. omegas_ : list of array-like Relevance Matrices dim_ : list of int Maximum rank of projection regularization_ : array-like, shape = [n_classes/n_prototypes] Values between 0 and 1 See also -------- RslvqModel, MrslvqModel """
[docs] def __init__(self, prototypes_per_class=1, initial_prototypes=None, initial_matrices=None, regularization=0.0, dim=None, classwise=False, sigma=1, max_iter=2500, gtol=1e-5, display=False, random_state=None): super(LmrslvqModel, self).__init__(sigma=sigma, random_state=random_state, prototypes_per_class=prototypes_per_class, initial_prototypes=initial_prototypes, gtol=gtol, display=display, max_iter=max_iter) self.regularization = regularization self.initial_matrices = initial_matrices self.classwise = classwise self.initialdim = dim
def _optgrad(self, variables, training_data, label_equals_prototype, random_state, lr_relevances=0, lr_prototypes=1): n_data, n_dim = training_data.shape nb_prototypes = self.c_w_.size variables = variables.reshape(variables.size // n_dim, n_dim) prototypes = variables[:nb_prototypes] # dim to indices indices = [] for i in range(len(self.dim_)): indices.append(sum(self.dim_[:i + 1])) omegas = np.split(variables[nb_prototypes:], indices[:-1]) # .conj().T g = np.zeros(variables.shape) if lr_relevances > 0: gw = [] for i in range(len(omegas)): gw.append(np.zeros(omegas[i].shape)) c = 1 / self.sigma for i in range(n_data): xi = training_data[i] c_xi = label_equals_prototype[i] for j in range(prototypes.shape[0]): if len(omegas) == nb_prototypes: omega_index = j else: omega_index = np.where(self.classes_ == self.c_w_[j])[0][0] oo = omegas[omega_index].T.dot(omegas[omega_index]) d = (xi - prototypes[j])[np.newaxis].T p = self._p(j, xi, prototypes=prototypes, omega=omegas[omega_index]) if self.c_w_[j] == c_xi: pj = self._p(j, xi, prototypes=prototypes, y=c_xi, omega=omegas[omega_index]) if lr_prototypes > 0: if self.c_w_[j] == c_xi: g[j] += (c * (pj - p) * oo.dot(d)).ravel() else: g[j] -= (c * p * oo.dot(d)).ravel() if lr_relevances > 0: if self.c_w_[j] == c_xi: gw -= (pj - p) / self.sigma * ( omegas[omega_index].dot(d).dot(d.T)) else: gw += p / self.sigma * (omegas[omega_index].dot(d).dot(d.T)) if lr_relevances > 0: if sum(self.regularization_) > 0: regmatrices = np.zeros([sum(self.dim_), n_dim]) for i in range(len(omegas)): regmatrices[sum(self.dim_[:i + 1]) - self.dim_[i]:sum( self.dim_[:i + 1])] = \ self.regularization_[i] * np.linalg.pinv(omegas[i]) g[nb_prototypes:] = 2 / n_data * lr_relevances * \ np.concatenate(gw) - regmatrices else: g[nb_prototypes:] = 2 / n_data * lr_relevances * \ np.concatenate(gw) if lr_prototypes > 0: g[:nb_prototypes] = 1 / n_data * \ lr_prototypes * g[:nb_prototypes] g *= -(1 + 0.0001 * (random_state.rand(*g.shape) - 0.5)) return g.ravel() def _optfun(self, variables, training_data, label_equals_prototype): n_data, n_dim = training_data.shape nb_prototypes = self.c_w_.size variables = variables.reshape(variables.size // n_dim, n_dim) prototypes = variables[:nb_prototypes] indices = [] for i in range(len(self.dim_)): indices.append(sum(self.dim_[:i + 1])) omegas = np.split(variables[nb_prototypes:], indices[:-1]) out = 0 for i in range(n_data): xi = training_data[i] y = label_equals_prototype[i] if len(omegas) == nb_prototypes: fs = [self._costf(xi, prototypes[j], omega=omegas[j]) for j in range(nb_prototypes)] else: fs = [self._costf(xi, prototypes[j], omega=omegas[np.where(self.classes_ == self.c_w_[j])[0][0]]) for j in range(nb_prototypes)] fs_max = max(fs) s1 = sum([np.math.exp(fs[i] - fs_max) for i in range(len(fs)) if self.c_w_[i] == y]) s2 = sum([np.math.exp(f - fs_max) for f in fs]) s1 += 0.0000001 s2 += 0.0000001 out += np.math.log(s1 / s2) return -out def _optimize(self, x, y, random_state): nb_prototypes, nb_features = self.w_.shape nb_classes = len(self.classes_) if not isinstance(self.classwise, bool): raise ValueError("classwise must be a boolean") if self.initialdim is None: if self.classwise: self.dim_ = nb_features * np.ones(nb_classes, dtype=np.int) else: self.dim_ = nb_features * np.ones(nb_prototypes, dtype=np.int) else: self.dim_ = validation.column_or_1d(self.initialdim) if self.dim_.size == 1: if self.classwise: self.dim_ = self.dim_[0] * np.ones(nb_classes, dtype=np.int) else: self.dim_ = self.dim_[0] * np.ones(nb_prototypes, dtype=np.int) elif self.classwise and self.dim_.size != nb_classes: raise ValueError("dim length must be number of classes") elif self.dim_.size != nb_prototypes: raise ValueError("dim length must be number of prototypes") if self.dim_.min() <= 0: raise ValueError("dim must be a list of positive ints") # initialize psis (psis is list of arrays) if self.initial_matrices is None: self.omegas_ = [] for d in self.dim_: self.omegas_.append( random_state.rand(d, nb_features) * 2.0 - 1.0) else: if not isinstance(self.initial_matrices, list): raise ValueError("initial matrices must be a list") self.omegas_ = list(map(lambda v: validation.check_array(v), self.initial_matrices)) if self.classwise: if len(self.omegas_) != nb_classes: raise ValueError("length of matrices wrong\n" "found=%d\n" "expected=%d" % ( len(self.omegas_), nb_classes)) elif np.sum(map(lambda v: v.shape[1], self.omegas_)) != nb_features * \ len(self.omegas_): raise ValueError( "each matrix should have %d columns" % nb_features) elif len(self.omegas_) != nb_prototypes: raise ValueError("length of matrices wrong\n" "found=%d\n" "expected=%d" % ( len(self.omegas_), nb_classes)) elif np.sum([v.shape[1] for v in self.omegas_]) != \ nb_features * len(self.omegas_): raise ValueError( "each matrix should have %d columns" % nb_features) if isinstance(self.regularization, float): if self.regularization < 0: raise ValueError('regularization must be a positive float') self.regularization_ = np.repeat(self.regularization, len(self.omegas_)) else: self.regularization_ = validation.column_or_1d(self.regularization) if self.classwise: if self.regularization_.size != nb_classes: raise ValueError( "length of regularization must be number of classes") else: if self.regularization_.size != self.w_.shape[0]: raise ValueError( "length of regularization " "must be number of prototypes") variables = np.append(self.w_, np.concatenate(self.omegas_), axis=0) label_equals_prototype = y res = minimize( fun=lambda vs: self._optfun( vs, x, label_equals_prototype=label_equals_prototype), jac=lambda vs: self._optgrad( vs, x, label_equals_prototype=label_equals_prototype, lr_prototypes=0, lr_relevances=1, random_state=random_state), method='L-BFGS-B', x0=variables, options={'disp': self.display, 'gtol': self.gtol, 'maxiter': self.max_iter}) n_iter = res.nit res = minimize( fun=lambda vs: self._optfun( vs, x, label_equals_prototype=label_equals_prototype), jac=lambda vs: self._optgrad( vs, x, label_equals_prototype=label_equals_prototype, lr_prototypes=0, lr_relevances=1, random_state=random_state), method='L-BFGS-B', x0=res.x, options={'disp': self.display, 'gtol': self.gtol, 'maxiter': self.max_iter}) n_iter = max(n_iter, res.nit) res = minimize( fun=lambda vs: self._optfun( vs, x, label_equals_prototype=label_equals_prototype), jac=lambda vs: self._optgrad( vs, x, label_equals_prototype=label_equals_prototype, lr_prototypes=1, lr_relevances=1, random_state=random_state), method='L-BFGS-B', x0=res.x, options={'disp': self.display, 'gtol': self.gtol, 'maxiter': self.max_iter}) n_iter = max(n_iter, res.nit) out = res.x.reshape(res.x.size // nb_features, nb_features) self.w_ = out[:nb_prototypes] indices = [] for i in range(len(self.dim_)): indices.append(sum(self.dim_[:i + 1])) self.omegas_ = np.split(out[nb_prototypes:], indices[:-1]) # .conj().T self.n_iter_ = n_iter def _f(self, x, i): d = (x - self.w_[i])[np.newaxis].T d = d.T.dot(self.omegas_[i].T).dot(self.omegas_[i]).dot(d) return -d / (2 * self.sigma) def _costf(self, x, w, **kwargs): if 'omega' in kwargs: omega = kwargs['omega'] else: omega = self.omegas_[np.where(self.w_ == w)[0][0]] d = (x - w)[np.newaxis].T d = d.T.dot(omega.T).dot(omega).dot(d) return -d / (2 * self.sigma) def _compute_distance(self, x, w=None): if w is None: w = self.w_ def foo(e): fun = np.vectorize(lambda w: self._costf(e, w), signature='(n)->()') return fun(w) return np.vectorize(foo, signature='(n)->()')(x)
[docs] def project(self, x, prototype_idx, dims, print_variance_covered=False): """Projects the data input data X using the relevance matrix of the prototype specified by prototype_idx to dimension dim Parameters ---------- x : array-like, shape = [n,n_features] input data for project prototype_idx : int index of the prototype dims : int dimension to project to print_variance_covered : boolean flag to print the covered variance of the projection Returns -------- C : array, shape = [n,n_features] Returns predicted values. """ nb_prototypes = self.w_.shape[0] if len(self.omegas_) != nb_prototypes \ or self.prototypes_per_class != 1: print('project only possible with classwise relevance matrix') # y = self.predict(X) v, u = np.linalg.eig( self.omegas_[prototype_idx].T.dot(self.omegas_[prototype_idx])) idx = v.argsort()[::-1] if print_variance_covered: print('variance coverd by projection:', v[idx][:dims].sum() / v.sum() * 100) return x.dot(u[:, idx][:, :dims].dot(np.diag(np.sqrt(v[idx][:dims]))))